An ℏ-adic valuation property of universal R-matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A PRECISE DESCRIPTION OF THE p-ADIC VALUATION OF THE NUMBER OF ALTERNATING SIGN MATRICES

Following Sun and Moll [4], we study vp(T (N)), the p-adic valuation of the counting function of the alternating sign matrices. We find an exact analytic expression for it that exhibits the fluctuating behaviour, by means of Fourier coefficients. The method is the Mellin-Perron technique, which is familiar in the analysis of the sum-of-digits function and related quantities.

متن کامل

Braid group approach to the derivation of universal R matrices

A new method for deriving universal R matrices from braid group representation is discussed. In this case, universal R operators can be defined and expressed in terms of products of braid group generators. The advantage of this method is that matrix elements of R are rank independent, and leaves multiplicity problem concerning coproducts of the corresponding quantum groups untouched. As example...

متن کامل

Universal Approximator Property of the Space of Hyperbolic Tangent Functions

In this paper, first the space of hyperbolic tangent functions is introduced and then the universal approximator property of this space is proved. In fact, by using this space, any nonlinear continuous function can be uniformly approximated with any degree of accuracy. Also, as an application, this space of functions is utilized to design feedback control for a nonlinear dynamical system.

متن کامل

The 2-adic Valuation of Stirling Numbers

We analyze properties of the 2-adic valuations of S(n, k), the Stirling numbers of the second kind. A conjecture that describes patterns of these valuations for fixed k and n modulo powers of 2 is presented. The conjecture is established for k = 5.

متن کامل

Universal R–matrices for non-standard (1+1) quantum groups

A universal quasitriangular R–matrix for the non-standard quantum (1+1) Poincaré algebra Uziso(1, 1) is deduced by imposing analyticity in the deformation parameter z. A family gμ of “quantum graded contractions” of the algebra Uziso(1, 1)⊕U−ziso(1, 1) is obtained; this set of quantum algebras contains as Hopf subalgebras with two primitive translations quantum analogues of the two dimensional ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2003

ISSN: 0021-8693

DOI: 10.1016/s0021-8693(02)00672-5